Over the past few years, Apache Kafka has emerged as the leading standard for streaming data. Fast-forward to the present day, Kafka has achieved ubiquity, being adopted by at least 80% of the Fortune 100. This widespread adoption is attributed to Kafka’s architecture, which goes far beyond basic messaging. Kafka’s architecture versatility makes it exceptionally suitable for streaming data at a vast ‘internet’ scale, ensuring fault tolerance and data consistency crucial for supporting mission-critical applications. Flink is a high-throughput, unified batch and stream processing engine, renowned for its capability to handle continuous data streams at scale. It seamlessly integrates with Kafka and offers robust support for exactly-once semantics, ensuring each event is processed precisely once, even amidst system failures. Flink emerges as a natural choice as a stream processor for Kafka. While Apache Flink enjoys significant success and popularity as a tool for real-time data processing, accessing sufficient resources and current examples for learning Flink can be challenging.
In this article, I will guide you through the step-by-step process of integrating Kafka 2.13-3.7.0 with Flink 1.18.1 to consume data from a topic and process it within Flink on the single-node cluster. Ubuntu-22.04 LTS has been used as an OS in the cluster.
Assumptions:-
Installation and starting of Flink-1.18.1:-
List of dependent jars:-
The following jars should be included on the classpath/build file
I’ve created a basic Java program using Eclipse IDE 23-12 to continuously consume messages within Flink from a Kafka topic. Dummy string messages are being published to the topic using Kafka’s built-in kafka-console-publisher script. Upon arrival in the Flink engine, no data transformation occurs for each message. Instead, an additional string is simply appended to each message and printed for verification, ensuring that messages are continuously streamed to Flink.
The entire execution has been screen-recorded. If interested you could watch it here.
https://vimeo.com/920423458?share=copy
I hope you enjoyed reading this. Please stay tuned for another upcoming article where I will explain how to stream messages/data from Flink to a Kafka topic
Can be reached for real-time POC development and hands-on technical training at gautambangalore@gmail.com. Besides, to design, develop just as help in any Hadoop/Big Data handling related task, Apache Kafka, Streaming Data etc. Gautam is a advisor and furthermore an Educator as well. Before that, he filled in as Sr. Technical Architect in different technologies and business space across numerous nations.
He is energetic about sharing information through blogs, preparing workshops on different Big Data related innovations, systems and related technologies.
Page: 1 2
A data fabric is an innovative system designed to seamlessly integrate and organize data from… Read More
Big data technologies' quick development has brought attention to the necessity of a smooth transition… Read More
Data is being generated from various sources, including electronic devices, machines, and social media, across… Read More
An Apache Kafka outage occurs when a Kafka cluster or some of its components fail,… Read More
Complex event processing (CEP) is a highly effective and optimized mechanism that combines several sources… Read More
Source:- www.PacktPub.com This book focuses on data science, a rapidly expanding field of study and… Read More