Tech Threads

Why Lambda Architecture in Big Data Processing

Due to the exponential growth of digitalization, the entire globe is creating minimum 2.5 quintillion 2500000000000 Million) bytes of data every day and that we can denote as Big Data. Data generation is happening from everywhere starting from social media sites, various sensors, satellite, purchase transaction, Mobile, GPS signals and much more. With the advancement of technology, there is no sign of slowing down of data generation, instead it will grow in massive volume. All the major organizations, retailers, different vertical companies and enterprise products have started focusing on leveraging big data technologies to produce actionable insights, business expansion, growth etc.


Lambda Architecture is an excellent design framework for the huge volume of data processing using both streaming as well as batch processing method. The streaming processing method stands for analysing the data on the fly when it is on motion without persisting on storage area whereas batch processing method is applied when data already in rest, means persisted in storage area like databases, data warehousing systems etc. Lambda Architecture can be effectively utilized to balance latency, throughput, scaling, and fault-tolerance to achieve comprehensive and accurate views from the batch and real-time stream processing simultaneously.
We can divide the entire Big Data processing into two different Data Pipelines. One is when data is in rest that means, the massive volume of data collected from different sources, store or persisted on a distributed manner and then analyse to get an accurate view in order to take the business decision. We can term it as Batch Data-processing Pipeline also.

Another one is for Streaming Data Pipeline where analysis can be done when data is in motion. Here runs the computation on the live data stream. Apache Spark is an excellent framework for it. Spark chop up the live stream of data into small batches, hold those into memory then process and finally release them from it’s memory to data flow again. Due to in-memory computation, latency reduces significantly.

Nathan Marz from Twitter is the first contributor who designed lambda architecture for big data processing. Lambda architecture can be divided into four major layers. As we can see in the architecture diagram, layers start from Data Ingestion to Presentation/View or Serving layer.

– In Data ingestion or consumption layer, we can include Apache Kafka, Flume etc which are responsible for gathering data from various/multiple sources. Based on the requirement to process data either on batches, live streaming or combination of both, bifurcation takes place here like Lambda sign(λ).
– In Batch layer, all the data accumulate at once before running any computation on top of it. Here we can achieve fault-tolerance and replication to prevent any data loss. Hadoop Distributed File System (HDFS) can be considered in this layer.

Page: 1 2

Recent Posts

The Significance of Complex Event Processing (CEP) with RisingWave for Delivering Accurate Business Decisions

Complex event processing (CEP) is a highly effective and optimized mechanism that combines several sources… Read More

3 months ago

Principle Of Data Science

Source:- www.PacktPub.com This book focuses on data science, a rapidly expanding field of study and… Read More

3 months ago

Integrating Apache Kafka in KRaft Mode with RisingWave for Event Streaming Analytics

Over the past few years, Apache Kafka has emerged as the top event streaming platform… Read More

3 months ago

Criticality in Data Stream Processing and a Few Effective Approaches

In the current fast-paced digital age, many data sources generate an unending flow of information,… Read More

4 months ago

Partitioning Hot and Cold Data Tier in Apache Kafka Cluster for Optimal Performance

At first, data tiering was a tactic used by storage systems to reduce data storage… Read More

5 months ago

Exploring Telemetry: Apache Kafka’s Role in Telemetry Data Management with OpenTelemetry as a Fulcrum

With the use of telemetry, data can be remotely measured and transmitted from multiple sources… Read More

6 months ago